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Lecture 21: Learning and optimization for sequential decision making

Instructor: Shipra Agrawal Scribed by: Ji Xu

1 Problem definition:

• At every time t = 1, 2, · · · :

1 Observe state st ∈ S
2 Take action at ∈ A, observe reward rat(st).

3 Observe transition st+1 from st. st+1 follows (unknown) probability distribution pat(st) over states in

S.

Assumptions:

1 Bounded rewards: ra(s) ∈ [0, 1] (not a random variable)

2 MDP is communicating, i.e, there exists finite diameter D defined as

D = max
s6=s′

min
π:S→A

E[τ(s, s′, π)],

where τ(s, s′, π) is the number of time steps it takes to reach s′ from s when using Markovian stationary

policy π.

Regret definition

Given starting state s1 = s and any finite time period T , our natural goal is to maximize the finite horizon reward

T∑
t=1

rat(st).

Then Regret is defined as the following:

R(T ) = Tρ∗ −
T∑
t=1

rat(st),

where ρ∗ is considered as optimal infinite horizon average reward. It is achieved by a Markovian stationary policy

π∗ and ρ∗ is defined as the following:

∀s, ρ∗ = lim
T→∞

1

T
E[

T∑
t=1

rπ∗(st)(st)|s1 = s].
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Notice that ρ∗ doesn’t depend on the initial state s1. This is because we can always spend finite expected steps

to any state required which is guaranteed by the Assumption 2 that MDP is communicating, and finite steps of

different rewards won’t effect the limit of the average reward. For any given algorithm, we define the Regret of the

algorithm as the following:

R(M, s, t) = Tρ∗ − E[

T∑
t=1

rt|s1 = s],

where M = (S,A, r, p, s) with finite |S|, finite |A| and Assumption 1 and 2 hold.

Heuristic argument:

Comparing to the model we have learned, there are now |A||S| arms instead of |A| to represent any pair of state

s and action a. Moreover, we can only determine a(action) instead of directly choosing an arm (s, a) to play. A

direct bad consequences is that even if we are using the optimal policy π∗ at time t, there is still a chance st+1 is

bad. Therefore, we need communicating assumption in Assumption 2, otherwise we could get stuck on a bad state

forever. With finite diameter D assumption, if we stuck in bad state, instead of immediately switching to good

state in one step, it will cost us D steps to get out of bad state. Therefore, if earlier we needed to explore every of

|A| arms log(T )/gap times, we should need to explore every of |S||A| arms at least D log(T )/gap times.

2 Main results:

Theorem 1. With probability of at least 1 − δ, it holds that for any initial state s and any T > 1, the regret of

UCRL2 is bouded by

R(M, s, T ) ≤ 34D|S|
√
|A|T log(T/δ).

Theorem 2. For any algorithm, S,A ≥ 10, D ≥ 20 logA(S) and T ≥ DSA, there exists an MDP M with state

action space of size S,A, diameter D, such that regret in time T

E[R(M, s, T )] ≥ 0.015
√
D|S||A|T .

Algorithm

Similar as UCB algorithm, at any given time, we will use sample transitions observed so far to construct estimate

p̂a(s, s′) of pa(s, s′) for every pair of s, a. Then we build high probability confidence intervals around these estimates.

Then we find a MDP M̃ with highest gain ρ̃ among all plausible MDPs whose transition probability lies in these

confidence intervals. Then find the optimal policy π̃ based on M̃ . Since even if π̃ is in fact the best policy π∗, the

next reward might still be bad, we run the policy π̃ for some τ time steps instead of updating the policy in each

step. We call the time period of using the same policy as one episode. The algorithm is designed as following:

Initialize t = 1, observe state s1.

For episodes k = 1, 2, . . .

Step 1: Initialize episode k

• Set start time of episode τk = t.

• nk−1(s, a): number of times s, a was visited before τk.

• Pk−1(s, a, s′): number of transitions to s′, when a was played in state s before τk.

• p̂k−1(s, a, s′) = Pk−1(s,a,s
′)

max{1,nk−1(s,a)} .

Step 2: Find optimistic MDP

2



• Plausible MDPs: Mk be the set of all MDPs(S,A, r, p̃) such that

|p̃a(s, ·)− p̂k−1(s, a, ·)‖1 ≤

√
14|S| log(2|A|t/δ)
max{1, nk−1(s, a)}

. (1)

• Find (near) optimal policy for the best MDP in Mk,

(M̃k, π̃k, s̃k) = arg max
M̃∈Mk,π,s

ρπ(s, M̃).

Step 3: Execute the optimistic policy π̃k
For t = τk, t+ 1, t+ 2, · · · ,

• Observe st, play at = π̃k(st)

• update nk(st, at)

• Break if nk(st, at) ≥ 2nk−1(st, at)

Go to episode k+1.

3 Interpretation

Step 1 is initializing the algorithm and is quite straightforward. Step 3 executes the candidate policy π̃k over the

steps of episode k, and it controls the length of the current episode k – the condition in the last line is to ensure

that current episode is long enough to get good estimate of gain of the candidate policy, but also short enough so

that there aren’t very long gaps between updates of candidate policy. We will now mainly explain the intuition for

Step 2.

For Step 2, a simple heuristic argument for the derivation of Eq.(1) is the following:

Using Hoefding Inequality, we have

Pr(|p̂k−1(s, a, s′)− p(s, a, s′)| ≥ ε) ≤ 2e−2nε
2

,

where from step 1, we know n = max{1, nk−1(s, a)}.
By choosing ε =

√
1

2max{1,nk−1(s,a)} log( |A||S|
2t

δ ), we have

∑
s,a,s′

Pr(|p̂k−1(s, a, s′)− p(s, a, s′)| ≥ ε) ≤ 2
∑
s,a,s′

δ

|A||S|2t
=

2δ

t
.

Using this ε, with at least 1− 2δ
t probability, we have

|pa(s, ·)− p̂k−1(s, a, ·)‖1 ≤ |S|ε ≤ |S|

√
log(|A||S|2t/δ)

2 max{1, nk−1(s, a)}
, (2)

having extra factor
√
|S| comparing to Eq.(1). This is because we are not using the fact that both pa(s, ·) and

p̂k−1(s, a, ·) are probability measures that sum up to 1. If we are using this fact, from the Theorem 2.1 in [2], we

have

Pr(‖p̂k−1(s, a, ·)− pa(s, ·)‖1 ≥ ε) ≤ (2|S| − 2)e−
nε2

2 .
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By choosing ε =
√

14|S| log(2|A|t/δ)
max{1,nk−1(s,a)} , we have

∑
s,a

Pr(‖p̂k−1(s, a, ·)− pa(s, ·)‖1 ≥ ε) ≤ |S||A|(2|S| − 2)(
δ

2|A|t
)7|S| <

δ

t
.

Therefore with probability at least 1− δ
t , we have

‖p̂k−1(s, a, ·)− pa(s, ·)‖1 ≤ ε =

√
14|S| log(2|A|t/δ)
max{1, nk−1(s, a)}

,∀a, s.

In class, we define Mk based on all plausible p̃a(s) since the reward are deterministic. Yet in [1], the author

consider the reward ra(s) is a random variable. Therefore they used estimates r̂a(s) for the reward and construct

a confidence interval with high probability. In addition, they define Mk not only based on all plausible p̃a(s), but

also on all plausible r̃a(s) which lie in the confidence interval for r̂a(s).

For finding the optimal policy, the second part of step 2, we first define a single ”large” MDP and then find most

optimistic policy by solving this ”large” MDP.

Define ”extended MDP” M+, with states as original states S, but many more (continuous space of) actions A+.

In particular, for every original a, s

• one new action for every plausible distribution p̃a(s) in the confidence interval.

• on taking this “new” action in state s, we see reward ra(s), but state transition follows p̃a(s) distribution.

• on taking this “new” action in other states s′, we see reward ra(s′), but state transition follows p̂a(s′)

distribution.

As we showed in the first part of Step 2, at the beginning of episode k + 1, for ∀a, s, pa(s) is one of the plausible

distribution lies in the confidence interval with high probability. Moreover, we have

• Finding optimal policy for extended M+
k is equivalent to finding π̃k: optimal policy for most optimistic MDP

in Mk.

• Extended MDP M+
k is also communicating with diameter D.

Before we give an algorithm to solve the best policy for M+, we present value iteration algorithm for solving a

finite state and finite action known MDP.

Let Jn(s) denote the optimal finite horizon reward achievable in n steps, starting at state s. Then,

J1(s) = max
a

ra(s).

Using the idea of dynamic programming, we can induct that

Jn(s) = max
a
{ra(s) +

∑
s′

Jn−1(s′)pa(s, s′)}

Now letting steps n goes to infinity, we have

Jn(s)− Jn−1(s)→ ρ∗ + V ∗(s),∀s.

More rigorously, we have the following theorem:

Theorem 3. (Puterman 1994)

For aperiodic communicating MDPs

lim
n→∞

max
s
{Jn+1(s)− Jn(s)} −min

s
{Jn+1(s)− Jn(s)} = 0.
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In fact,

lim
n→∞

Jn(s1)− Jn(s2) = V ∗(s1)− V ∗(s2).

Therefore, using this fact,we have the following algorithm for infinite horizon average reward:

1 Initialize J(s) = 0,∀s, n = 0.

2 For n = 1, 2, . . .

Jn(s) = max
a
{ra(s) +

∑
s′

pa(s, s′)Jn−1(s′)}

If maxs{Jn+1(s)− Jn(s)} −mins{Jn+1(s)− Jn(s)} < ε, goto step 3, otherwise continue.

3 Output policy πε:

πε(s) ∈ arg max
a
{ra(s) +

∑
s′

pa(s, s′)Jn−1(s′)}.

Though πε(s) is not exactly the optimal policy, but the following theorem guarantees that it is almost the best

policy:

Theorem 4. (Puterman 1994)

For any ε > 0, aperiodic communicating MDPs value iteration terminates in finite steps, and the policy πε, is

ε-optimal policy, in that for all s,

ρ(πε, s) ≥ ρ∗ − ε.

Now we move to our own problem of solving optimal policy for M+ where the difference is that each action a

in state s is replaced by new actions corresponding to all plausible p̃a(s), and for each of these actions, pa(s) is

replaced by p̃a(s). The algorithm will be the following:

1 Initialize J(s) = 0,∀s, n = 0.

2 For n = 1, 2, . . .

Jn(s) = max
a

max
plausiblep̃a(s)

{ra(s) +
∑
s′

p̃a(s, s′)Jn−1(s′)}

If maxs{Jn+1(s)− Jn(s)} −mins{Jn+1(s)− Jn(s)} < ε, goto step 3, otherwise continue.

3 Output policy π̃ε:

π̃ε(s) ∈ arg max
a

max
plausiblep̃a(s)

{ra(s) +
∑
s′

p̃a(s, s′)Jn−1(s′)}.

As a final summary of Step 2, let ρ̃k(s̃k) be the gain of the most optimistic MDP, when starting state is s̃k. Then,

Theorem 5. With probability 1− δ
20t6 ,

M ∈Mk

such that

ρ̃k(s̃k) ≥ ρ∗.

In fact, ρ̃k(s) = ρ̃k ≥ ρ∗ for all s

Proof. First claim (ρ̃k(s̃k) ≥ ρ∗) follows from the construction, which ensures that the original MDP is one of the

plausible MDPs, with the given probability. The second claim (ρ̃k(s) = ρ̃k) follows directly from the observation

that ρ̃k(s̃k) is equal to the gain of corresponding extended MDP, which is a communicating MDP.
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And using the algorithm provided above, we can find an almost optimal policy π̃ε(s).
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